Отчет о миссии

за период с 21 ноября по 8 декабря 2016 г.

Оливер Пристли-Лич, Международный эксперт по управлению речными бассейнами (моделирование)

1. Цель миссии

- 1.1. Пересмотреть задачи, согласованные в период миссии 2
- 1.2. Обсуждение концепции WEAP
- 1.3. Согласовать потребность промышленности в водных ресурсах
- 1.4. Определить КПД орошения (внутрихоз)
- 1.5. Оценить потери при транспортировке каналы первого и второго порядка
- 1.6. Определить составные части городской системы водоснабжения
- 1.7. Подготовить данные для ввода в модель WEAP
- 1.8. Подготовить первый проект модели WEAP с данными для Чу-Таласского бассейна
- 1.9. Представить ОРП первый проект модели
- 1.10. Начать сбор схем всех бассейнов и районов
- 1.11. Запланировать последующие шаги

2. Проведенные мероприятия

Список основных мероприятий, проведенных за период миссии, представлен в Приложении 1.

2.1. Обзор задач миссии 2

	Виды работ	Комментарии	Ответственное
			лицо
1	Собрать схемы по Чу-	ИБ – завершить при разработке схемы	ИБ
	Таласу и понять, какие	Таласского бассейна	
	каналы и реки - основные.		
2	Найти в интернете	Найдена. Загружена в Дропбокс. На этот раз	ИБ
	«Стратегию развития	никаких конкретных данных из нее извлечь	
	питьевого водоснабжения	нельзя. Изучить еще раз до разработки	
	и водоотведения	сценариев.	
	населенных пунктов КР до		
	2026 г.»		
3	Динамические ресурсы	Данные загружены в Дропбокс и введены в	РЛ
	(естественное	модель WEAP.	
	возобновление из		
	поверхностных вод) для		
	каждого водоносного		
	горизонта.		
4	Анализ изменений в	Построены диаграммы тенденций и готовы	Оливер
	сельскохозяйственном	для использования в сценариях.	
	использовании		
5	Прогноз ежегодного роста	Данные взяты в Отделе народонаселения	ИБ
	населения.	Департамента по экономическим и	
		социальным вопросам ООН. Высокий,	
		низкий и низкий рост населения. Данные	
		добавлены в модель WEAP.	

6	Изучить расположение	Узловые точки грунтовых вод добавлены в	РЛ
0	водоносных горизонтов,	модель WEAP.	171
	чтобы рекомендовать,	модель WEAT.	
	будет ли 1 или 3 узловых		
	точки ГВ в модели WEAP		
	Чуйского бассейна		
7	•	Пока не выполнено.	РЛ
,	Подтвердить	Пока не выполнено.	FJI
	расположение		
	гидропостов и		
	правильность данных для		
•	каждого гидропоста	B C B	
8	Предоставить карты и/или	Данные собраны. Решено не использовать	ИБ
	данные по ежемесячным	их в настоящий момент, т.к. полный	
	осадкам с метеостанций	гидрологический баланс не используется в	
_		модели.	
9	Возможная	Данные загружены. Принято решение не	Оливер
	эвапотранспирация и	использовать их сейчас, т.к. полная	
	данные по осадкам с	гидрологическая модель «осадки-сток» не	
	бесплатных вебсайтов с	включена в модель. Данные из открытых	
	открытым исходным	источников в Кыргызстане собраны только	
	кодом. Загрузка и анализ.	по 3 станциям.	
10	Проверить карту	Картирование по землепользованию –	Оливер
	землепользования	продолжается.	
11	Приток в подземные воды	Рассчитаны оценочные значения и введены	РЛ
	и сток из рек	в модель WEAP.	
12	Трансграничные расходы	Некоторые данные получены от Айнуры,	Оливер
		некоторые – от Дамиры, и некоторые – от	
		проекта іМоМо. Исторические данные	
		введены в модель WEAP.	
13	Забор подземных вод	Разница между данными МГЭ и 2ТП Водхоз.	РЛ
		Принято решение использовать данные 2ТП	
		Водхоз, т.к. данные МГЭ, возможно,	
		основаны на разрешенных объемах, а не на	
		фактическом водозаборе.	
14	Рассчитать расходы в реках	Рассчитаны расходы рек по Чуйскому	РЛ
		бассейна. Должны быть рассчитаны расходы	
		р. Талас.	
15	Создать аккаунт Dropbox	Выполнено.	Оливер
16	Информация по сельскому	У Азамата сейчас есть доступ к базе данных	Оливер
	водоснабжению	сельской системы водоснабжения. Оливеру	•
		– доработать при необходимости.	
17	Рассчитать расходы в	Выполнено, введены в модель.	РЛ/ИБ
	каждом канале		(Оливер)
18	Рассчитать площади,	Выполнено, введены в модель WEAP.	(3 p)
10	подвешенные под	SSSAMENO, SSEACHOLD MODERID WEEKL.	
	каналами и реками в		
	каналами и реками в		
19	Получить данные 2ТП	В ОВП получены данные за 2015 г. Всё ещё	РЛ
13	Водхоз за 2013-15 г.	необходимы данные за 2013 и 2014 гг.	F/I
	родхоз за 2015-15 I.	неооходимы данные за 2013 и 2014 п.	

2.2. Обсуждение концепции WEAP

Обзор основных аспектов модели WEAP приведен в Приложении 2. Проведена презентация по модели WEAP для Национального Координатора Компонента 1 и Национального Специалиста по планированию речных бассейнов.

2.3. Согласовать потребность промышленности в водных ресурсах

Потребность промышленности в водных ресурсах взята из данных РУВХ, основанных на средней водоподаче за 2011-2015 гг. Почти нет изменений год от года. Данные введены в модель WEAP.

2.4. Определить КПД орошения (внутрихоз)

Проведены встречи с сотрудниками Компонента 3 для согласования корректных значений КПД внутрихозяйственного орошения и потерь во внутрихозяйственной ирригационной сети. Согласованные величины: КПД орошения = 70% и потери внутрихозяйственной сети = 35%.

2.5. Оценить потери при транспортировке – каналы первого порядка

Потери при транспортировке в сети первого порядка взяты как разница между водой, отведенной из водоисточника (н-р, реки), и водой, поданной во внутрихозяйственную сеть. Допустим, что большая часть потерь уходит в подземные воды. Некоторые потери будут на хищение/дикий водозабор. Не имеется значений соотношения потерь на хищения и утечки.

2.6. Определить составные части городской системы водоснабжения

Проведена встреча с Асылбеком Исаевым, «Бишкекводоканал», для обсуждения фактической водоподачи, очистки сточных вод и подключений, и водораспределения для целей планирования. Предоставлена информация о потерях воды. Не имеется документов по стратегическому планированию, которые могли бы быть использованы как часть разработки сценариев (н-р, прогноз роста населения, изменения в доступе к системе водоснабжения, вероятные изменения водопотребности вследствие экономического развития, изменения числа подключений к канализации). Они, вероятно, получат в будущем поддержку Европейского Банка для содействия в планировании.

2.7. Подготовить данные для ввода в модель WEAP

Данные введены в модель WEAP Национальными Консультантами. Были зафиксированы процедуры ввода данных и источники данных. Они могут быть затем доработаны и уточнены для моделей остальных бассейнов.

2.8. Подготовить первый проект модели WEAP с данными для Чу-Таласского бассейна Завершена Чуйская часть Чу-Таласского бассейна. Детали основных элементов модели WEAP см. в Приложении 2. Первая проверка результатов наводит на мысль, что сельскохозяйственная потребность в водных ресурсах, рассчитанная по WEAP на основании входных данных, гораздо выше, чем поданные объемы воды. Нужно изучить возможные причины этого — значения оросительных норм, посевные площади и отчетные объемы

2.9. Представить ОРП первый проект модели

водоподачи.

Презентация модели Рабочей группе АПВР и команде ИСВ. Из обсуждений после презентации было понятно, что существует значительное недопонимание, для чего нужно использовать модель WEAP, кем будут пользователи модели и соответствие результатов.

2.10. Начать сбор схем всех бассейнов и районов

Проведена встреча с В. Гутником, Управление эксплуатации ГМС. Была предложена информационная поддержка.

2.11. Запланировать последующие шаги

Список задач, согласованных к выполнению до Миссии 4, - см. Раздел 5.

3. Проблемы

Больше усилий требуется, чтобы свести воедино все составляющие Компонента 1, чтобы гарантировать, что по крайней мере все сотрудники Компонента 1 имеют верное понимание использования WEAP. Последующие Миссии должны включать по меньшей мере 1 встречу со всеми членами, чтобы они были полностью вовлечены в процесс и имели взаимопонимание.

В разных отделах Департамента остается нежелание предоставить полные наборы данных для процесса моделирования. Должно возрасти доверие коллег из Департамента, чтобы стимулировать их всестороннее участие и поддержку. Также модель WEAP с результатами и практическими примерами сценариев должна быть представлена другим сотрудникам Департамента, чтобы гарантировать, что они понимают применение WEAP.

Кажется, стратегическое планирование является концепцией-вызовом в настоящее время. Водоканал и некоторые отделы Департамента, по-видимому, не имеют долгосрочных стратегических планов или индикаторов (н-р, роста населения, структуры посевных площадей), которые можно перенести в модель для справки или других сценариев. Похоже, это основано на предпосылке, что т.к. существуют многочисленные неизвестные противоречивые факторы в будущем, то невозможно сделать надежные прогнозы или оценить тенденции. Нужно приложить усилия и продемонстрировать простоту запуска многочисленных сценариев с моделью, чтобы предоставить возможный круг решений, после чего можно принимать решение о планировании.

Количество данных, предоставленных отдельными облводхозами, является противоречивым. Предлагается, чтобы список пропущенных таблиц был предоставлен Национальному Специалисту по планированию речных бассейнов для рассылки в облводхозы. Так мы избежим дублирования запросов от разных сотрудников Компонента 1.

Модель уже продемонстрировала свое значение при определении того, где может потребоваться пересмотр данных. Например, требования к потребности сельского хозяйства в водных ресурсах и водоподаче значительно выше, чем фактически поданные объемы воды, что объясняется одной (или более) из нижеуказанных причин:

- а) Слишком высокие оросительные нормы
- b) Завышены сведения по орошаемым площадям
- с) Занижены данные по водоподаче
- d) Высокий процент повторного использования водных ресурсов: орошение \rightarrow дренаж \rightarrow последующее орошение ниже по течению
- е) Потери гораздо ниже рассчитанных или отчетных

Этот вопрос должен быть изучен дополнительно как часть процесса калибровки.

4. Предложения на Фазу 2

1) Сосредоточиться на выбранных суббассейнах для более детального изучения отдельных вопросов. Например, одной интересной местности в болотах около Токмака на севере

- страны, которая является заболоченной территорией, важной для птиц, но может стать объектом осушения, если возрастет забор подземных вод в Бишкеке или уменьшится питание грунтовых вод вследствие повышения КПД орошения.
- 2) Улучшенное моделирование взаимодействия поверхностных, дренажных и подземных вод. В настоящее время эти взаимосвязи недостаточно динамичны. В Чуйской долине и в некоторых долинах на юге очень важна взаимосвязь грунтовых и поверхностных вод. Например, в Чуйской долине грунтовые воды залегают очень близко к поверхности и имеются зоны питания и выклинивания ГВ. Изменения КПД орошения могут значительно уменьшить величину питания подземных вод в притоке ГВ в р. Чу, что может повлиять на трансграничные расходы, снизить водообеспеченность хозбытового и промышленного водопользования, повысить оросительную потребность (т.к. ГВ опускаются ниже уровня корневой зоны). Существует значительное различие между коэффициентами горизонтальной и вертикальной фильтрации, и требуется улучшенное пространственное и временнОе моделирование расходов.
- 3) Внесение затрат в модель. Сосредоточиться на выбранных пилотных объектах (например, пилотные системы Фазы 1) и добавить капитальные и доходные (единичные и фиксированные) статьи. Сюда можно включить выгоды, н-р, доход от продажи воды, прибыль от культур. Затраты могут быть использованы для сравнения различных сценариев вмешательства на одной из пилотных систем.

5. Следующая миссия

Следующая миссия предположительно в начале/середине февраля. Даты должны быть утверждены.

Список задач, согласованных к выполнению до Миссии 4, приведен ниже.

	Виды работ	Комментарии	Ответственное
1	Испарение из подземных вод в Чуйском бассейне (восток, запад, центр)	Проанализировать исторические данные	РЛ
2	Оценить движение ГВ в Таласском бассейне.	Запросить приток в реки из подземных вод и или отток из рек. Изучить отчет СМЕК по Таласскому Бассейновому Плану и другие исторические данные	РЛ
3	Разработать схему Таласского бассейна и (ирригационных систем).	Изучить схемы в папке «Инфраструктура» в Дропбоксе. Также попросить Улана (ГИС-Специалист в команде ИСВ) посмотреть, какие схемы он сделал. Ссылка на Таблицы 3.8 и 3.4 в таблицах Excel от Дамиры	ИБ
4	Добавить каналы транспортировки, максимальный расход и долю воды, отведенной в каждую ирригационную систему	Использовать данные технических паспортов из отдела В. Гутника и данные из БУВХ/ от Дамиры	ИБ
5	Повторить пункты 3 и 4 для Кочкорки		ИБ

6	Закончить описание модели Чу-Таласского бассейна	Эта документация будет составлять часть руководства.	ИБ
7	Откалибровать модель	Изучить данные. Проанализировать средний водозабор за 2013-15 гг.	Оливер
8	Подготовить исторические данные по стоку рр. Талас и Чу в Казахстан	Использовать данные для калибровки модели	Оливер / РЛ
9	Изучить данные по орошению с О. Сегизбаевым	Нужно проверить, правдоподобны ли оросительные нормы, и найти возможное объяснение расхождению между смоделированными значениями и фактическим расходом	ИБ
10	Искать исторические данные по Иссык-Кулю		РЛ

Приложение 1: Обзор мероприятий Миссии 3

Дата	Задача (задачи)
пн 21 ноября	Подготовка к миссии
	Изучение документов
	Перелет
вт 22 ноября	Встреча с национальными консультантами
	Обзор проделанной работы
ср 23 ноября	Обзор проделанной работы совместно с национальными консультантами
	Презентация по прогрессу в разработке модели для Д. Сыдыковой и Н.
	Маматалиева
	Встреча с А. Сулаймановым – запрос по данным
чт 24 ноября	Разработка модели – добавление элементов, подготовка данных, запись
	мероприятий
25	Встреча с К. Жаанбаевым – данные по КПД орошения
пт 25 ноября	Разработка модели — добавление элементов, подготовка данных, запись мероприятий
	Встреча с Д. Сыдыковой по вопросу дальнейшего сбора данных в областях
	Встреча с А. Сулаймановым
	Встреча с О. Сегизбаевым по вопросу о КПД орошения
сб 26 ноября	Разработка модели – добавление элементов, подготовка данных, запись
	мероприятий
вс 27 ноября	Разработка модели – добавление элементов, подготовка данных, запись
	мероприятий
пн 28 ноября	Разработка модели – добавление элементов, подготовка данных, запись
	мероприятий Встреча с В. Гутником – информация по техническим
	паспортам
	Встреча с А. Токтоналиевой и А. Сулаймановым – сбор данных, в т.ч.
вт 29 ноября	данные по трансграничным расходам
вт 29 нояоря	Разработка модели – добавление элементов, подготовка данных, запись мероприятий
	Встреча с г-ном Бейшекеевым
Ср 30 ноября	Разработка модели – добавление элементов, подготовка данных, запись
ер зо полорл	мероприятий
	Встреча в «Водоканале»
чт 1 декабря	Разработка модели – добавление элементов, подготовка данных, запись
112 2 212	мероприятий
сб 3 декабря	Разработка модели – добавление элементов, подготовка данных, запись
	мероприятий
вс 4 декабря	Разработка модели – добавление элементов, подготовка данных, запись
	мероприятий
пн 5 декабря	Подготовка к презентации
	Презентация для Рабочей группы АПВР
вт 6 декабря	Разработка модели – добавление элементов, подготовка данных, запись
	мероприятий
	Встреча с О. Сегизбаевым для обсуждения оросительных норм
ср 7 декабря	Планирование 4-й миссии с Национальными Консультантами
чт 8 декабря	Перелет и отчет о миссии

Приложение 2

1. Обзор модели и основные элементы

1.1. Что такое WEAP

WEAP — это инструмент поддержки принятия решений для интегрированного управления водными ресурсами. Это инструмент планирования для поддержки стратегических решений, учитывающий всех водопользователей и ресурсы. Он моделирует природные и созданные человеком водопотребление и ресурсы и взаимосвязи между ними. Он оптимизирует водораспределение согласно приоритетным потребностям и предпочтениям при водоподаче. Его можно использовать для моделирования существующей ситуации и тестирования возможных будущих сценариев по управлению и ресурсам. Стандартные сценарии могут касаться таких вопросов, как изменение климата, политика по планированию, усовершенствования инфраструктуры, рост населения, международные соглашения по транспортировке больших объемов воды и изменение экологических требований.

Модель WEAP дает схематическое представление о речном бассейне, который может быть разбит на под-водосборы. Как входные данные, так и результаты обычно можно представить в виде графиков или схем.

1.2. Основные элементы WEAP

- Потребности:
 - а) Сельское хозяйство (орошение) на уровне района
 - о Зерновые
 - Пшеница и ячмень
 - злаки
 - рис
 - о промышленные культуры
 - табак
 - свекла
 - хлопок
 - фасоль
 - масличные
 - о кормовые культуры
 - о овощи
 - о прочие (фруктовые сады, пастбища, огороды)

водопотребность культуры = оросительная норма для культуры x посевная площадь под культурой.

Выраженная как ежемесячная водопотребность при подаче годовой оросительной нормы согласно ежемесячных норм по схемам орошения.

б) Городская (домохозяйства и предприятия)
 Одна точка водопотребности на район плюс гг. Бишкек и Ош.
 Доля сельского населения, определенная для каждого района

Потребность = население Х водоподача (л/чел./сут.)

Водоподача согласно типу подключения

- Колонка = 50 л/чел./сут.
- Централизованное водоснабжение = 100 л/чел./сут.
- Централизованное горячее водоснабжение = 470 л/чел./сут.
- другое = 170 л/чел./сут.
- Доля населения, подключенного к разным системам в сельской и городской местности.
- с) Промышленность

1 на область плюс любое крупномасштабное производство (н-р, месторождение полезных ископаемых)

d) Трансграничные расходы

Водопотребность основана на международных соглашениях как процент от речного стока или на исторических водозаборах.

- е) Прочая плановая водопотребность, не включенная в Чу-Таласскую модель
 - Экологическая (минимальный сток)
 - Гидроэнергетическая (скорее водопользователь, чем потребитель)

Ресурсы:

- Реки
 - Расходы до орошаемых земель на основании данных с существующих данных с гидропостов или интерполированных, если данные с гидропостов отсутствуют
 - о Введены данные только за текущий год
 - Будут введены исторические данные для создания временных радов для сценариев
- Каналы
 - о Показаны основные каналы-распределители больших объемов воды, которые обслуживают ирригационные системы первого порядка
- «Внутрихозяйственные источники»
 - Представляют собой разнообразные местные источники, такие как мелкие реки, дрены, небольшие водохранилища, родники и местные источники грунтовых вод.
- Водохранилища
 - Показаны основные водохранилища, но не включена эксплуатация водохранилищ
- Подземные воды
 - о Основные водоносные горизонты показаны как отдельные ресурсы
 - Включает данные по максимально разрешенному водозабору (допущение = естественное возобновление)
- Очищенные сточные воды

Каналы транспортировки (транспортировка воды от ресурса до точки потребления или между ресурсами):

- Связь магистральных каналов с точками сельскохозяйственной водопотребности: представляет собой системы ирригационных каналов первого порядка.
 - Расходы ограничены до максимальной проектной пропускной способности канала и долей общей орошаемой площади, обслуживаемой этой системой.
- Связь подземных вод с городским водопотреблением.

- В настоящее время не установлено никаких максимальных расходов
- Возвратные воды с орошаемых массивов в подземные воды
 - Допускает процент потерь воды вследствие КПД орошения и возврат внутрихозяйственных потерь в грунтовые воды. Оставшаяся часть используется повторно (возвратные воды во внутрихозяйственные источники) или теряется на испарение.
- Возвратные воды во внутрихозяйственные источники
 - Допускает процент потерь воды вследствие КПД орошения, возврат внутрихозяйственных потерь в дрены и повторное внутрихозяйственное использование. Оставшаяся часть уходит в ГВ или теряется на испарение.
- Сток поверхностных вод в реки (дренаж)
 - о Выраженный как сток в м3/с на основании анализа исторических данных.
- Сток подземных вод в реки
 - о Выраженный как сток в м3/с на основании анализа исторических данных.
- Сток из рек в подземные воды
 - о Выраженный в процентах от стока на данном участке реки

Потери:

- В основных каналах транспортировки (межхозяйственная сеть)
 - о Выраженные в процентах от расхода в канале
- Внутрихозяйственные потери (внутрихозяйственная сеть)
- Потери на поле (КПД орошения)
- Потребление в пределах объекта водопотребности
 - о Для муниципальных и промышленных водопользователей
 - о Определяет имеющийся объем возвратных вод на очистных сооружениях

Другие возможные переменные, которые могут быть включены, но не будут включены в период данной Фазы:

- Затраты капитальные и операционные (единичные и фиксированные)
- Прибыль переменная и фиксированная, выработка электроэнергии, доход от культур

2. Другие параметры модели

2.1. Пространственные границы

Бассейны, определенные НСВ:

- 1. Чу-Таласский
- 2. Нарынский
- 3. Иссык-Кульский
- 4. Баткенский
- 5. Жалалабадский

2.2. Период времени

Текущий год = 2015 (последний год с полными данными)

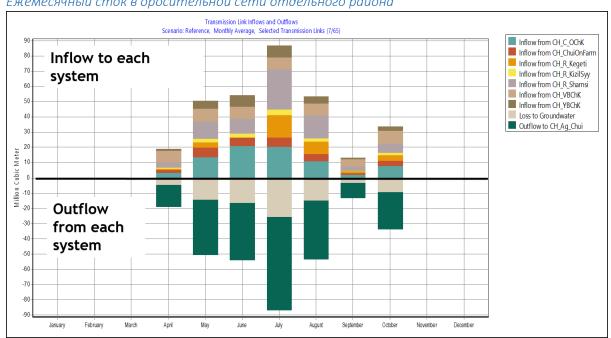
Сценарии до 2035 г. (20 лет)

3. Типовые результаты

Типовые результаты, которые могут рассматриваться:

- водопотребность
- требования к водоподаче
- неудовлетворенная потребность в водных ресурсах объем и % от удовлетворенной водопотребности
- объемы водоподачи
- расходы
- потери
- потребление
- транспортировка подземных вод
- Сток возвратных вод

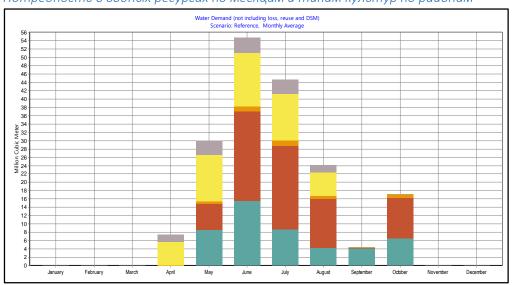
Уровень представления данных:

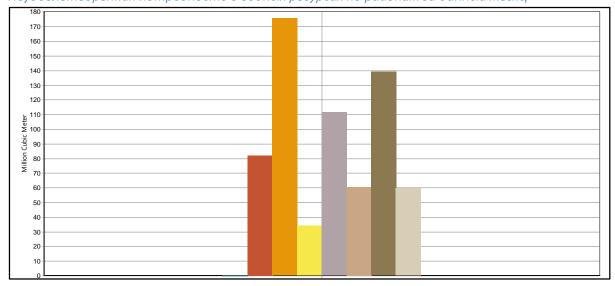

- район
- бассейн реки
- река или участок реки
- система канала
- категория водопотребности
- год
- месяц

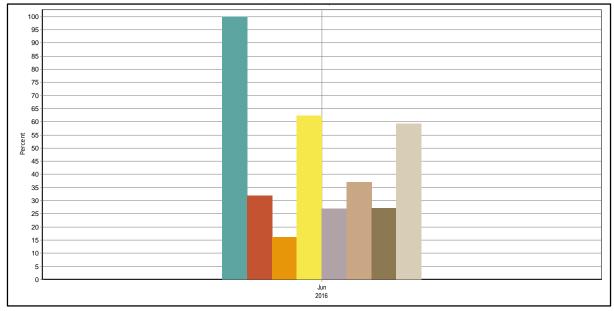
Сравнение по

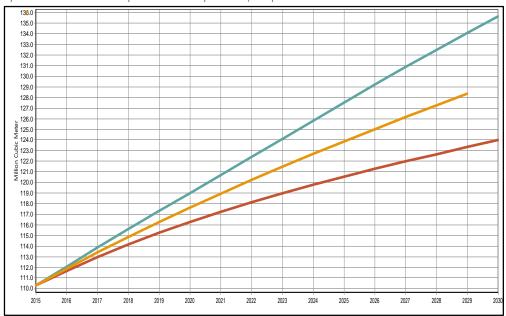
- годам
- сценариям
- площадям
- месяцам

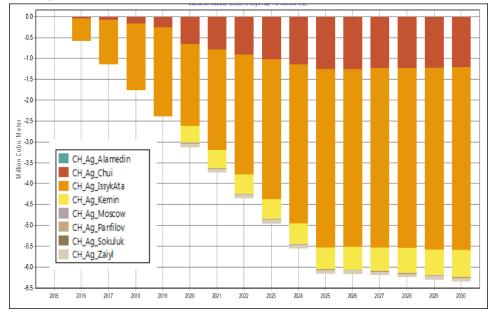
3.2. Примеры некоторых результатов

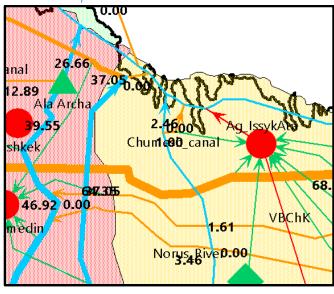

Ежемесячный сток в оросительной сети отдельного района

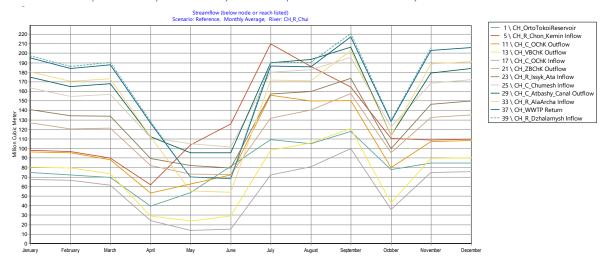

Расходы в системе канала первого порядка по районам

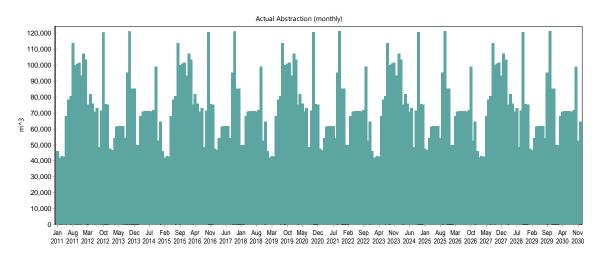

Потребность в водных ресурсах по месяцам и типам культур по районам

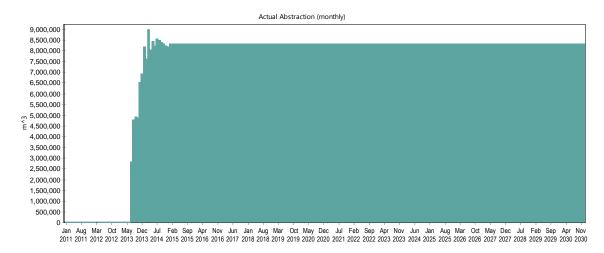

Неудовлетворенная потребность в водных ресурсах по районам за данный месяц

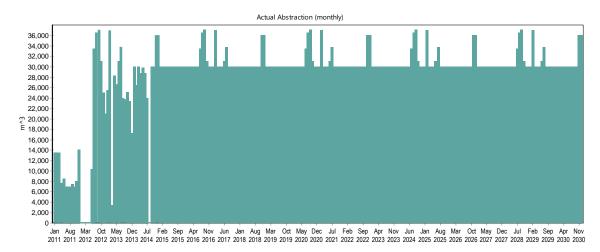

Надежность водообеспеченности — процент от удовлетворенной потребности в водных ресурсах


Сравнение водопотребности в ряде сценариев


Влияние последовательного уменьшения потерь на неудовлетворенную водопотребность в одном районе


Наглядное представление ежемесячного стока во всех реках и каналах


Ежемесячный расход на различных участках реки в заданном году.


Цикличные данные от заданных лет в будущее

Фиксированная величина в будущем

Комбинация – фиксированный минимальный сток.

