

Geospatial Technologies and Remote Sensing for Monitoring SDGs 4-8 July 2016, Budapest, CEU

The case study area: Lake Uromiyeh, Iran

- Hypersaline lake located at the NW of Iran.
- Its basin covers about 54000 km2 and climate is semi-arid,
- Average annual rainfall of about 350 mm/year (250 at the lake, 1200+ in the mountains).
- Shallow lake (6-8 m deep when it is full) and has no outflow.

Problem: water allocation between agriculture and the ecosystem

Geospatial Technologies and Remote Sensing for Monitoring SDGs 4-8 July 2016, CEU

Groundwater over-exploitation

Shoreline retreat in 2005 – nowadays it is much worse...

Land use types in the region

Geospatial Technologies and Remote Sensing for Monitoring SDGs 4-8 July 2016, CEU

General schematic for a qanat

- (1) Infiltration part of the tunnel
- (2) Water conveyance part of the tunnel
- (3) Open channel
- (4) Vertical shafts
- (5) Small storage pond
- (6) Irrigation area
- (7) Sand and gravel
- (8) Layers of soil
- (9) Groundwater surface

Modelling approach to IWRM in Uromiyeh

Input to the system: precipitation (rain and snow)

Geospatial Technologies and Remote Sensing for Monitoring SDGs 4-8 July 2016, CEU

Losses from the system (calculated from satellite images)

Modelled sub-watershed: Gadar Chai

Conceptual model of Ghadar Chai

Water network in Ribasim

Long-term calibration of flow

Geospatial Technologies and Remote Sensing for Monitoring SDGs 4-8 July 2016, CEU

Scenarios

- Agriculture without efficiency increase
 - Priority 1: domestic and industrial supply
 - Priority 2: agriculture and fishponds with present efficiency
 - Priority 3: wetlands with present demand + streamflow
- Agriculture with efficiency increase
 - P1: domestic and industrial supply
 - P2: agriculture and fishponds with increased efficiency
 - P3: wetlands with increased demand + streamflow
- Environment without efficiency increase
 - P1: domestic and industrial supply
 - P2: wetlands with present demand + streamflow
 - P3: agriculture and fishponds with present efficiency
- Environment with efficiency increase
 - P1: domestic and industrial supply
 - P2: wetlands with increased demand + streamflow
 - P3: agriculture and fishponds with increased efficiency

Conceptual model of the Uromiyeh Basin

Major conclusions of the project

- The recent water use is already more than the environmentally tolerable.
- Further development without efficiency improvement is killing Lake Uromiyeh.
- Even the planned efficiency improvement is not enough for balancing the population pressure (increasing agricultural production) and the need for energy production.

Not a success story...

Geospatial Technologies and Remote Sensing for Monitoring SDGs 4-8 July 2016, CEU

