Geospatial Technology at the Global Environment Facility

Dr. Anupam Anand

Evaluation Officer Independent Evaluation Office, Global Environment Facility World Bank Group, Washington DC

What is Global Environment Facility?

Projects Countries: GEF OFPs/PFPs Convention FPs Other Gov't Agencies NGOs/ CSOs Private Sector

GEF: Institutional Framework

Efficiency

Analysis at different scales

Aiding objectivity and transparency

Applicable to variety of monitoring evaluation methods

Why do we need Geospatial technology?

Project Design

RBM and Monitoring

Evaluation

Knowledge Management

How do we need Geospatial technology?

GEF Land Degradation Projects

Impact of GEF Land degradation interventions?

Factors associated with the environmental outcomes?

Value for Money in terms of Carbon sequestered?

PORTFOLIO Land degradation

DEMONSTRATING IMPACT MENA-DELP:Jordan

6. Valuation of Carbon sequestration

5. Causal trees

2. Geospatial data

....

0

3. Data integration

िते. Geocoding

₹,

• :

4. Matching analysis

analysis

Methodology

Framework for Monitoring and Reporting on SDG Target 15.3

Sub -Indicators UNCCD (CBD, UNFCCC) **Reporting Mechanisms**

Land Use and

Management Practices

Official Statistics and Earth Observation

0 🗂 🖥

Surveys, Sampling and **Citizen Sourcing**

Indicators

Carbon Sequestration(Tier 2b)

Forest Fragmentation(Tier 3a)

Machine learning, causal tree method for assessing factors influencing outcomes and influencing outcomes and impact.

Model simulation done numerous times to account for model Uncertainty

Model Uncertainty

Estimated Mean Impact NDVI Diff pre-post implementation

	[96.86,130.8]	
•	(130.8,164.8]	
•	(164.8,198.8]	
•	(198.8,232.8]	
•	(232.8,266.7]	

	Dependent variable:	
	NDVI Diff pre-post implementation	
treatment	0.08^{***} (0.03, 0.14)	
Dist. to Rivers (m)	-0.04 (-0.14, 0.07)	
Dist. to Roads (m)	0.06^* (-0.01, 0.12)	
Elevation (m)	-0.18*** (-0.31, -0.06)	
Slope (degrees)	-0.11** (-0.21, -0.02)	
Urb. Dist. (rel)	-0.01 (-0.08, 0.07)	
Pop. Density (2000)	0.06 (-0.04, 0.17)	
Protected Area %	$0.09^{***}(0.03, 0.14)$	
Treecover (2000, %)	0.05 (-0.04, 0.13)	
Latitude	-0.09* (-0.18, 0.003)	
Longitude	0.12*** (0.22, 0.02)	
Max Procip (2002 mm)	-0.13 (-0.22, -0.03)	
Min Precip. (2002, mm)	-0.42 (-0.58, -0.27)	
Min Precip (2002, mm)	-0.08 (-0.17, 0.01)	
Mean Precip (2002, mm)	0.27*** (0.08, 0.45)	
Max Temp (2002, C)	0.004 (-0.33, 0.34)	
Min Temp (2002, C)	-0.28 (-0.78, 0.22)	
Mean Temp (2002, C)	-0.23 (-0.98, 0.52)	
Nightime Lights (2002, Relative)	-0.02 (-0.10, 0.06)	
MDVI (2002, Unitiess)	0.01(-0.07, 0.10)	
Dist to Rivers (m) *Treatment	-0.04 (-0.14, 0.07)	
Dist. to Roads (m) *Treatment	-0.03 (-0.10, 0.04)	
Pop. Density (2000) *Treatment	-0.06 (-0.17, 0.04)	
Latitude *Treatment	0.03 (-0.06, 0.12)	
Longitude *Treatment	0.08 (-0.02, 0.17)	
NDVI (2002, Unitless) *Treatment	$0.07^{*}(-0.01, 0.15)$	
Elevation (m) *Treatment	0.25*** (0.12, 0.37)	
Slope (degrees) *Treatment	$-0.12^{**}(-0.22, -0.02)$	
Treecover (2000 %) *Treatment	-0.03(-0.11, 0.06)	
Max Temp (2002, C) *Treatment	0.57*** (0.24, 0.90)	
Maan Temp (2002, C) *Treatment	1.05**** (1.90, 0.21)	
Min Tomp (2002, C) *Treatment	-1.05 (-1.00, -0.51)	
Man Presin (2002, C) * Treatment	0.80 (0.30, 1.30)	
Max Precip. (2002, mm) *Treatment	-0.06 (-0.21, 0.10)	
Min Brocip (2002, mm) *Treatment	0.06 (-0.12, 0.25)	
Min Precip (2002, min) * Freatment	-0.12 (-0.20, -0.03)	
Nignume Lights (2002, Relative) * Freatment Protoctod Area 94 *Treatment	0.02 (0.07, 0.04)	
Constant	-0.02 (-0.07, 0.04)	
Observations	-0.01 (-0.00, 0.05)	
n ²	05.0	
K-	0.30	
Adjusted R ²	0.27	

Findings: NDVI

Forest Landcover

4.5 years after Population More effective density near urban areas

Findings: Forest cover

GEF land degradation project valuations

43.52

tons of carbon sequestered per hectare

108,800

tons of carbon sequestered per project location

\$7,500,000

contributed by sequestration alone

Lag time of 4.5 to 5.5 years for impacts to be observed

Access to electricity associated with higher impact Higher impact observed in areas with poor initial conditions

Findings

International Waters

296 projects

\$1.68 billion In grant funding

\$10.38 billion via co-financing

Portfolio

THE MOST COMMON...

Findings

THE MOST COMMON...

Portfolio

Rehabilitation of the Black Sea Northwest Shelf dead zone

Adoption of the Ballast Water Convention on Alien Species, the Pacific Tuna Treaty, the Guarani Aquifer Agreement

Support the process leading to the Stockholm and Minamata Conventions

Establishment of the Benguela Current Commission

Contributions

The Most Comprehensive GEF Web Toolkit Available

News

Read the latest news from International Waters Projects

Мар

Browse and search our catalogue of projects via the waterbodies map

Resources

Explore IW:LEARN's resources including Documents, Images and Videos

Biodiversity

Study the impact of GEF support to 1292 global protected areas across 147 countries.

DEMONSTRATING IMPACT Global Protected Area

Study the impact of GEF support to 1292 global protected areas across 147 countries.

KEY BIODIVERSITY AREAS, highest scientific designation of global biodiversity significance

KBA International Designation National Importance

GEF-supported PAs have 23% less forest loss

Did the intervention cause the change?

Quasi-experimental evaluation design based on Propensity score matching

NASA DigitalGlobe NextView

Triangulating Across Methods

Beneficiary survey

Bamboo Forest

Time series analysis using Satellite data

Has the project allowed for creating of new jobs and livelihood?

Not Specified

Display options without

17

Challenges and Limitations

Uneven availability and accuracy of contextual variables across sites

Need for field verification/ groundtruthing

High computing power and technical skills needed

Solutions and Lessons

Thank you aanand2@thegef.org

GEF-UNDP SLEM, India