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MAKING THE CASE
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Number of natural disaster events since 1900 to 2007
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_ 'GLOBAL WATER

-: & Growmg vulnerablllty’>
-+ More disasters ?

- Less water for people?
“+ Crisis is looming?

- What crisis?

« Resource?

~* Governance?

* Global or local?



Water cycle
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Simplicity

Johann Wolfgang von Goethe
(1749-1832)

Everything is simpler
than you think
and at the same time

more complex than you imagine
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THE DRIVERS




KEY CHANGES SINCE 1900

The world’ s population has increased 3-fold
Water withdrawal has increased 6-fold
The area of cropland has almost doubled

The area of pasture has decreased by about
75%

The area covered by tropical forests has
decreased by about 25%o.

Dams now intercept ca. 40% of the runoff from
the continents



World Cities exceeding 5 million residents

Source:
U.N. Population
Division



World Cities exceeding 5 million residents

Source:
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Global change drivers:

e Population growth, movement,
migration and age structures

e Geo-political changes and

r

realignments
e Trade and subsidies
e Technological changes
e Climate change

Billions of people
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SUPERIMPOSED ON THIS ...




WATER AND CLIMATE



1
HEADLINE NEWS!HT

The climate Is changing !!!

(Yap, for 4 billion years now ...)
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L THE GREAT MIGRATION WAVES
OF THE PAST 100,00 YEARS

HUMAN DEVELOPMENT AND GLACIAL-INTERGLACIAL CYCLING

First migration of Aborigines Migrations of fully Great European
fully modern arrive in modern humans from Beginning civilisations:
humans out of Africa Australia South Asia to Europe of agriculture  Greek, Roman
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The Earth System: Coupling the Physical, Biogeochemical
and Human Components

External Forcing

Physical Climate System : WCRP
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THE URBAN HEAT ISLAND
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Figure 47. Annual mean temperature (°C), from 1822 to 2001, at: (top) Central Park in

New York City; and (bottom) US Military Academy, West Point, NY.
From Daly (2003).




Global Mean
Temperature have
increased

Greenhouse Gases
play a role

Reducing
Emissions alone
will not avoid
Impacts

Climate change: What do we know?

Temperature anomalies in °C

1.0
Natural causes

After 1950,
the temperature rise
cannot be explained

by natural causes alone.

1200

This temperature
increase cannot be
explained by human
activity alone.

19200 19250

Natural and man made causes

The model that includes
man made and natural
causes is the best fit.

Model resulis
— Observations




blimate change Is effecting our environment,
our societies and our cultures

Projected Impacts of Climate Change

Global temperature change (relative to pre-industrial)
1°C 2°C 3°C 4°C 5°C

Falling crop vields in many areas, particularly »
developing regions

Possible rising yields in b’ Falling yields in many
some high latitude regions developed regions

Significant decreases in walter

Smail ' i g : -
Smail ITOE— g"aﬂ:i avaliability in many areas, in Sea level rise

disappear — waler i . 3
supplies threate - Niediterranean and SoLutfherm threatens major cilie

several areas

Ecosystems

Extensive Damag’_ Rising number of species face extinction »
to Coral Reefs

Extreme
Weather Rising intensity of storms, forest fires, droughts, flooding and hea»—
Events

Risk of Abrupt and

Major Irreversible Increasing risk of dangerous feeQbacks;::»‘
abrupt, large-scale shifts in the chimate
Changes

(Source: IPCC)



. Water hazards and related nexi

are major challenges

» Intensifying and increasing occurrence of water
related hazard in many part of the world

» Serious concern on climate change such as
extreme hydrologic events and sea level




Major floods and droughts worldwide

<& £33 Flood {23 Drought

@
There is pressing need to develop advancegci risk
management on water hazard in order to secure
human life and ensure sustainable socio-
economic development and poverty alleviation.

-




Flood Disaster in Pakistan (August, 2010)

1) Indus River

2) Jehlum River

i) Chenab River
Ravi River

5) Beas River

6) Sultiej River

Copyright QEU— 2008 www.stratiorcom



http://www.greenfudge.org/wp-content/uploads/2010/10/Picture3.jpg
http://www.greenfudge.org/wp-content/uploads/2010/10/Picture3.jpg




Rio de Janneiro, Brasil (January, 2011)
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Flood Disaster in Brisbane, Australia (January, 2011)
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FLOODS
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FLOOD LOSSES IN FUNCTION

Map 10.3 Impact of flood losses (comparative losses based on national GDP)

Risk deciles
W 1st-4th (low)
O 5th-7th (medium)
. W 8th-10th (high)

Note: Deciles refer to the level of risk, normalized for comparing 10 categories.
Source: Based on Dilley et al. 2005.
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Fukuoka Flash Flood in 1999




O Urban expansion taking place
downward = Underground flood
risk

0O Recent developments = Long term
risks are not experienced

At Hakata station

— WestGate

Volume of water entered into
underground space:

2,017 m3 (simulated volume) 700 800 900 1000 11:00 12:00 13:00 1400
*1.320 m3 (total pumped water (Time)
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UNLESS POLITICAL LEADERS STICK TO THE PARIS
AGREEMENT

Temperature change in °C
o 2 0 M+ Bl s
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: TRUMP VS SCIENCE
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CLIMATE CHANGE IS
ALL ABOUT WATER




B Ty ——
KEY TO SUSTAINABILITY:

CLIMATE ADAPTIVE
WATER STRATEGIES




DO WE HAVE A
CHOICE?

WE NEED TO INCREASE THE

RESILIENCE

OF OUR SYSTEMS
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Economy-wide impacts

WORLD

WATER
COUNCIL

—l

[ Real GDP grow th (%)

— Variability in Rainfall (Meter)

0.0

Rainfall & GDP growth: Zimbabwe 1978-1993

-4.0

percentage

rainfall variation around the mean
GDP growth

Ethiopia: 1982 - 2000
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Global change impacts

 Global change is more than global climate variability/change
* It has natural PLUS human/social dimensions
* A constellation of changes, many global in domain

For example, we see large changes in:

Temperature

O 1.0
— Observed temperature
Nitrogen Flux to Coastal Zone a

Loss of Tropical Rain Forest
and Woodland

Species Extinctions

Bl Mammal species
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STATIONARITY IS
DEAD

New technologies are needed
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Expected Impacts of Global Changes on
Water Resource:

WILL WE HAVE MORE
FLOODS ?
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Outline

« Data Iissues
« Basic definitions and problems

* Overview of real-time operational
hydrological forecasting models

« State space analysis: Discrete models
e Structural-stochastic recursive models
e Lessons learned and outlook




THE DATA ISSUE



IF YOU CAN'T MEASURE IT
REAL TIME

AND IF YOU DON'T HAVE
THE

RIGHT DIGITAL
TECHNOLOGY

YOU CAN'T MANAGE IT






ow of information in a Hydromformatlcs system

Data = Models = Knowledge = Decisions

—_———>

Earth observation, Numerical Weather Data modelling, Accessto Decision
monitoring Prediction Models integration with  modelling support
hydrologic and  results ! N
hydraulic models “‘
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B Formulation
Il Implementation
M Primary Ops

W Extended Ops
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Landsat
Images

Tile
sguares

Dice...
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Data revolution:

Terra bytes Petabytes Exabytes ... Terra Hertz speed
m



MODELING



Modeling is the heart ...

Technologies support the whole
information cycle, and /ntegrate data,
models, and humans
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High Precision Earth Systems Tools
-Satellite data

Data assimilation
Simulation models
*Geospatial analysis / GIS

1uge progress but...

Present vegetation
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Our capacity to monitor
remains limited

Map 13.1 Distribution of Global Runoff Data Centre streamflow gauges

Global Runoff

Data Centre stations
time series end

W 1919-79

| 1980-84

o 1985-89

O 1990-94

m 1995-99

m 2000-04

W 2004-present

WORLD WATER DEVELOPMENT REPORT
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What Is
forecasting?




E “Though this be madness,

yet there is a method in it”
(Shakespeare)

What does forecasting
really mean?

Speaking about probabilities
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Forecasting Is a difficult thing,
particularly when it concerns
the future

(attributed to Niels Bohr)




uncertainty
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Basic definitions and problems

Forecasting vs.
Statistical prediction




‘Real-time
operational
forecasting is
very much a
time-critical
exercise

*The forecast
paradox




Basic requirements:

Consider the underlying physical principles
through appropriate structures

Consider stochasticity

Have a minimum number of free parameters to
estimate

Build up in a modular fashion to match complex
network topologies

Provide information on the reliability of the
forecast in function of the lead time

Be fast as forecasting is a time critical exercise




The models must be mathematically tractable and
yet robust

Adapt to the changing hydrological conditions by
having an internal updating mechanism

Provide uncertainty analysis
Have minimum site dependence

Set up of more complex models from simple ones
by mapping the topology of ariver system in a
modular fashion




Precipitation forecast

Bainfall-runoff model
forecast

Downstream flow
forecast using:

Statistical model

Flow-routing model

Stochastic-dynamic
model

Upstream water
management system
operation model




Overview of real-time
operational hydrological
forecasting models



Problems of the Week

Everything should be made
as simple as possible,

but not simpler.

Albert Einstein




All our trouble
started in 1932
with the UH

Effective rainfall
does not exist in
reality

Nobody observed
that IUH as such
does not exist
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Input ( ot )Output
Where to go?

Conceptual models / state variables
Complex vs. simplified
* Time series models / stochastic [UH

THE WAR: deterministic vs. stochastic —
Who is right?




A brokered marriage: can it be a good
compromise?

Can we arrange a marriage between
things of the two schools that are
good and rejecting at the same time
those things that are not good?;

Can we work on developing combined
structural — stochastic models that
are applicable for operational
forecasting use?
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Overview of approaches

« Unit hydrograph
« Soll moisture accounting
— Coaxials
— Explicit
— Implicit
Simplified physical models
Time series analysis based approaches
Combined models




e
API

* Antecedent Moisture/Precipitation Index
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APl based coaxials

precipifation
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*External vs.
*Internal descriptions




I
Constrained Linear System

(CLS) (rodini and wallis)
* APl dependent

threshold
 Two IUHS

S/ow response
system

(=1 (slow)




e
SACRAMENTO rainfall-runoff model
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e
HBV model

Precipitation

Evaporation in accordance with
T actual sotil moisture state

Soil moisture| Separation between upper zone
storage and soil maisture storage

||

Upper zone
storage

Precipitation )

_ Simplified
Evaporafion ar poten- time-area
tial rate from rivers r transrormation

Area

Lawer zgone (ground weater)
storage

Q

—_———

lakes and ouffiow areas L
— e, S




I
Sugawara s TANK model

(Implicit soil-moisture
accounting)
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e External vs.

* SIMPLIFIED internal
description




E ‘Make things simple,

but no simpler”
(Einstein)

Making things simple

An introduction to the anatomy of
COWS:

Chopping hydrodynamics down to
Its bones




T e

The linear kinematic wave as cow skeleton

Peel the various layers
of the hydrodynamic
equation off until the
principal structure
appears

Explains a large portion of the runoff
phenomena in terms of its variance
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Discretization In space

Linear kinematic
wave

an '(lt) an(t) O o .
- 0 Kalinin-Milyukov-
Nash (KMN) cascade
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Impulse responses of the

continuous KMN-cascade

n=1,2,...6
K=0.1,0.2,0.4, 0.8 days




Fx(t) + Gu(t)
Hx (%)




Yxun = (F, G H)
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State space analysis: The
Discrete Linear Cascade Model
(DLCM)




E From KNM to DCM:

time discretisation

 Discrete coincidence

 Dynamic changes between sampling
points

* Transitivity
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y(t) = Hx(t)



Yrun = (F.G, H)
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Generalizations for lateral inflows
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Learn from your errors
— 1f you can!




E “From error to error one

discovers the entire truth.”
(Freud)

Learn from your errors

An arranged marriage
between

Structure and Chance




A brokered marriage: can it be a good
compromise?

Can we arrange a marriage between
things of the two schools that are
good and rejecting at the same time
those things that are not good?;

Can we work on developing combined
structural — stochastic models that
are applicable for operational
forecasting use?




Work programme:

Arrange a marriage between things of the two
schools that are good and rejecting at the same
time those things that are not good;

Work on developing combined structural —
stochastic models that are applicable for
operational forecasting use




Batch vs. recursive
estimates

Noisy potato measurements



From old to new with
updating...

* {new estimate} = {old estimate} & {new
measurement data}

 {a posteriori} = {a priori} & {new information}
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The innovation/error is fed back to the old
estimate to get the new one. This feedback
mechanism is really the essence of updating.
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Deterministic
forecast by DLCM

*If errors have memory,
they have their own
dynamics that could be
modeled and
forecasted.

 If there is no internal
correlation in atime
series, it simply cannot
be forecasted.
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Autocorrelation functions of

noise types
White Gaussian 1.0
noise
o 0.0 LAG_;
Red (Markovian) 1.0
noise

0.0 LAG



Sample
autocorrelation
function of the
DLC one-day-
ahead error
seguence
showing
Markovian
characteristics

DLCM error sequence
08 Autocorrelation funtion

0 1 2 3 o 5 6 7 8 9 10
lag k [day]



The Kalman filter
also functions as a
predictor—
corrector algorithm
connecting a priori
and a posteriori
estimates through
the information
that is brought in
by the new
measurements

A priori
estimation

A posteriori
estimation

(Predictor)

New measurement

(Corrector)
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One-day-ahead
forecasts of the
Kalman-filtered
DLCM structural
and AR(1)
autoregressive
(stochastic)
combined model
with the forecast
error standard
deviation (+/- o)

One-day-ahead
forecast error
sequence.
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Autocorrelation
function of the
Kalman-filtered
DLCM and AR(1)
autoregressive
combined model
(White Gaussian
Noise sequence
at 95 %
Confidence
Level)
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Where do we go from here?




LESSONS



Eight lessons learned:

* Firstly, aforecasting model should always
encapsulate, even if in a strongly simplified
manner, the physics of the processes involved.

« Secondly, aforecasting model should always
encapsulate the treatment of the unavoidable
uncertainties as well.

* Thirdly, the deterministic — structural part and the
stochastic part, which describes the dynamics of
the errors of the previous part, need to be
coupled in combined forecasting models.




Eight lessons learned:

Fourthly, forecasts are to be updated through
error feedback whenever a new piece of relevant
iInformation becomes available.

Fifthly, there is no unique forecasting model.
Sixthly, there is no best forecasting model.

Seventhly, in operational hydrological forecasting
backup systems are always needed (see
Murphy’s extended relevant Laws).
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Eight lessons learned:

* Eighthly, never fully trust your model but trust
your oldest technician in the Forecasting Center.
Models are excellent decision support tools, yet
the human operator should never be excluded
from the process of issuing forecast.




The Eight Laws of Hydrological Forecasting
(Modified After Mr. Murphy)

§ 1 The flood always hits at Sunday 02:00 AM when
there is nobody in the forecasting center.

§2If § 1does not apply than the flood comes
when the staff is windsurfing on the nearby lake.

§ 3 If one is lucky one meets only once in a life time
the flood that is greater than the design flood.



The Eight Laws of Hydrological Forecasting

§ 4 If one is unlucky this happens regularly.

§ 5 The 100-year return period flood returns every
ten years minimum twice.

§ 6 When the Big Flood comes the on-line data
collection system fails within minutes.

§ 7 When the Big Flood comes all our precious
hardware breaks down in maximum K hours,
where K 1s one fifth of the concentration time of
the catchment.



The Eight Laws of Hydrological Forecasting

§ 8 The probability of the joint occurrence of
unfixable computer bugs in the code of our
forecasting model and the Big Flood is one.



Final lessons:

« Model development and usage is only a small
fraction of the costs of establishing and running
an operational hydrological forecasting system.

 Models play the same role as the heart does In
the human body. Small but one just cannot live

without them.




SO, WILL THERE BE
ENOUGH WATER IN THE

215T CENTURY?
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IS MORE
TECHNOLOGY THE
ANSWER?




It is part of the answer only ....

We need to generate
e The political will to ... DO ITees

 The capacity to ... DO IT RIGHT

e The resources to ... DO IT RIGHT
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17 Sustainable Development
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WATER CONNECTS THE SDGs




